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A B S T R A C T

This paper proposes a new hybrid disturbance observer (DOB) to help suppress disturbance to the control
systems. The proposed hybrid DOB consists of three main parts: (1) an actual system, (2) a simulated system,
and (3) a learning filter that connects the actual and simulated systems. The simulated system aims to replicate
the actual system response, where it leverages a neural network model to predict the input disturbance and
generate the predicted system response. Such system response is used to generate a learning signal through
a learning filter; this learning signal is then added to the feedforward loop of the estimation framework to
enhance the disturbance estimate and its suppression performance for the actual system. The proposed hybrid
DOB is designed to advance the standard DOB structure with a learning-based feedforward compensation.
While the proposed method does not modify the baseline controller, it is well suited to systems whose baseline
controllers are difficult or impossible to be changed. Considering the delivery drones are subject to oscillations
when dropping payloads, experimental tests with multiple payload dropping scenarios have been conducted
using both the hybrid and standard DOB, where the compared results validate the effectiveness and advantages
of the proposed hybrid DOB.
. Introduction

Disturbance observer (DOB) is a powerful technique for disturbance
ejection and it has been applied to various systems including hard disk
rives, manipulators, road vehicles, and drones [1–4]. A standard DOB
cheme usually consists of two components which are a stable plant
nverse and a low-pass filter [5]. The plant inverse outputs an internal
egative feedback to have the disturbance cancellation; the low-pass
ilter on the other hand, is synthesized for robustness purpose. While
he standard DOB-based control traditionally targets for the linear time-
nvariant (LTI) and single-input–single-output systems, its limits have
een pushed to suit more generalized systems such as non-minimum
hase systems [6,7], multiple-input–multiple-output systems [8,9], and
onlinear systems [10].

In the last few years, advanced control techniques have been com-
ined with DOB for performance enhancement. For example, fuzzy
ogic DOBs [11], sliding mode DOBs [12,13], and adaptive DOBs [14,
5] are introduced to either improve the disturbance estimation or in-
rease the system robustness to disturbance and uncertainties. In [16],
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a learning-based DOB framework is designed by leveraging iterative
learning control (ILC) scheme and H-infinity synthesis theory, and
this design is adaptive to generalized systems. In [17], an internal
mode frame-based DOB is designed for delivery drones to reduce
disturbance caused by the payloads. Besides the model-based DOBs,
machine learning on the other hand, promises model-free methods due
to its data-driven mechanism. In recent years, neural network (NN)
based DOB has been introduced to have predictions and enhanced
disturbance estimations [18–20], and it has been employed in various
applications including missile control [21] and autonomous underwater
vehicles [22].

It is well acknowledged that model-based DOBs can achieve high
performance due to the explicit expression of system dynamics. How-
ever, demanding performance usually requires an accurate model with
expensive tuning design, and this is infeasible for systems that the base-
line controller or DOB parameters are not allowed to be modified. Data
driven-based DOBs on the other hand, are positively recognized for
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replacing complicated dynamic models. The prediction further enables
generating feedforward signals to compensate the estimation.

To suppress the disturbance to systems whose baseline controllers
are impossible to be modified, we propose a hybrid DOB and consider
the disturbance rejection with a drone dropping payload scenarios. To
reduce the modeling complexity, the dynamic changes of the drone
caused by the detaching of the payload from the drone is not modeled,
and the oscillations caused by this dropping motion is considered as
the external disturbance to the drone. The hybrid DOB includes a
long short-term memory (LSTM) network to map from the payload
information to the input disturbance (equivalent disturbance injected to
the system), and the prediction is utilized to generate a learning signal
through a dynamic filter. The learning signal is added to the estima-
tion loop with the goal to achieve satisfactory performance regarding
disturbance suppression. Mostly, the studies of drones with payload
focus on the perturbation caused by the payload carrying instead of
the dropping process [23,24]. The related studies of hybrid DOB design
with applications to drones [25,26] are rare and the existing works are
limited to numerical studies. This paper is based on our previous con-
ference paper [26] with the following improvements: in this paper, (1)
the LSTM network maps directly from the payload information to the
input disturbance; (2) the system stability and robustness have been
rigorously discussed; (3) the learning filter design is formulated into
an optimization problem, and this optimization formulation method
reflects the novelty contribution; (4) experimental tests are conducted
for the validation.

Even though the fundamental problem in this payload dropping can
be considered as a weight and inertia change of the drone, such that
adaptive controller or tuning the gain of the PID controller might be
able to handle the oscillations caused by this sudden inertia change, it
is worth mentioning that, modifying the controller requires an accurate
model and extensive tuning efforts. Besides, many commercial drones
are not open for baseline controller modification once they are manu-
factured. Therefore, to provide an alternative method for disturbance
suppression without modifying the baseline controller, our proposed
method models the payload dropping as an external disturbance to the
drone to avoid the re-modeling process and utilizes the neural network
model to help improve the disturbance observer. The proposed DOB
is an add-on which does not modify the original feedback controller,
allowing more flexibility for the controller and DOB design. The major
contributions of this paper lie in the design of a new hybrid DOB
framework which consists of an actual system, a simulated system,
and a learning filter. The learning filter design has been formulated
into an optimization problem, and the systematic design guidelines are
provided. The advantages of such a DOB can be summarized as follows.
(1) For the drone delivery problem, an alternative DOB-based method
is used to suppress the disturbance without modifying the baseline
controller and system stability. This is particularly useful for systems
whose baseline controller cannot be modified. (2) The influence to the
drone caused by the payload dropping motion is treated as the external
disturbance to avoid complicate dynamic modeling process, and this
disturbance can be predicted by leveraging neural networks. (3) The
learning signal compensates for errors associated with both the baseline
controller and the DOB inaccuracies, allowing more design flexibility
for the two dynamic components. (4) The hybrid DOB can achieve
better system performance than the standard DOB regarding the drone’s
oscillation suppression, and experimental tests have been conducted to
validate the effectiveness of the proposed method.

The remainder of the paper is organized as follows: Section 2 for-
mulates the drone’s payload dropping problem, where the hybrid DOB
framework is presented, as well as the system stability and robustness
are analyzed; Section 3 formulates the learning filter design into an
optimization problem with solutions discussed; Section 4 demonstrates
the validation process including the testing platform and 2 testing
2

scenarios; Section 5 concludes the paper.
Fig. 1. Oscillations during payload dropping.

Fig. 2. Hybrid DOB framework.

2. Overview of the proposed hybrid DOB

2.1. Overall scheme

Large oscillation usually happens when a drone drops a payload.
Consider a drone is delivering a package, and at the final phase, it
hovers at a certain altitude and then drops the package to the ground
as shown in Fig. 1. This sudden dropping action would cause undesired
oscillations mainly in the vertical direction to the drone which needs
to be suppressed to guarantee a safe and stable flight.

To suppress this oscillations, we propose a hybrid DOB as shown
in Fig. 2. The hybrid DOB structure consists of three main parts:
(1) an actual delivery system (in the bottom figure), (2) a simulated
delivery system (in the upper figure), and (3) a learning filter that
connects the actual and simulated systems. We will first introduce the
notations and definitions used in the hybrid DOB structure: (1) the
actual system consists of the drone with the dynamics denoted as 𝑃 ,
the baseline feedback controller 𝐶, a standard DOB which consists of
a model inverse parameter 𝑀 , and a low-pass filter 𝑄. And 𝑧𝑟 is the
trajectory reference in the vertical direction, 𝑧𝑎 is the actual tracking
output of the drone in the vertical direction, 𝑒𝑎 is the trajectory tracking
error, 𝑢𝑎1 is the output of 𝐶, 𝑢𝑎2 is the input of 𝑄, 𝑞𝑎 and 𝑚𝑎 are
the outputs of 𝑄 and 𝑀 , respectively, 𝑑𝑎 is the external disturbance
to the drone system caused by the payload dropping action, 𝑑𝑜 is the
intermediate estimate from the DOB, and 𝑑𝑎 is the output of the hybrid
DOB. (2) The simulated system includes a nominal model of the drone
dynamics 𝑃 , and the same 𝐶, 𝑀, 𝑄 parameters used in the actual
system. And 𝑞𝑝 and 𝑚𝑝 are the outputs of 𝑄 and 𝑀 , respectively, 𝑧𝑟
is the same reference trajectory, 𝑧𝑝 is the tracking output, 𝑒𝑝 is the
trajectory tracking error, 𝑢 is the output of 𝐶, 𝑢 is the input of 𝑄,
𝑝1 𝑝2
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𝑑𝑝 is the external disturbance, and 𝑑𝑝 is the estimated disturbance. (3)
The learning filter 𝐿 takes 𝑒𝑝 as its input, and generates the output 𝑑𝑙
which is named as the learning signal. The learning signal is added to
the feedforward estimation loop of the actual system to compensate
for the estimate 𝑑𝑜. The learning filter is designed based on the system
dynamics and therefore, it dynamically brides the simulated and actual
systems and transfer the knowledge from the simulated system to the
actual system. In this study, the tracking error from the simulated
system is utilized to synthesize the learning signal and added to the
actual system for performance enhancement. The major differences
between the simulated system and the actual system lie in that (i) the
simulated system includes the nominal model 𝑃 which approximates
the actual model 𝑃 in the actual system; (ii) a learning signal 𝑑𝑙
is added to the estimation loop in the actual system, while there is
no learning signal added in the simulated system; (iii) the simulated
system is performed offline and the tracking error data can be collected
in advance, while the implementation of actual system is in real time.
The simulated system aims to replicate the actual system for the case
when there is no learning signal added to the actual system.

2.2. Compensated disturbance estimation

This section presents more details on disturbance estimation using
the proposed hybrid DOB. The necessity of the estimate compensation
is first explained, and then the compensation process is illustrated.

The estimate 𝑑𝑎 consists of two components, that is, the 𝑑𝑜 which
is from the standard DOB and the learning signal 𝑑𝑙. In practice, the
information 𝑑𝑜 is not sufficient for systems’ oscillation suppression and
it is necessary to compensate for the estimation. Consider that in the
actual system, when there is no 𝑑𝑙, then 𝑑𝑜 = 𝑑𝑎, and the estimate 𝑑𝑎
can be related to the actual disturbance 𝑑𝑎 as 𝑑𝑎 = 𝛤 {𝑑𝑎}, where 𝛤
lumps 𝑃 , 𝐶, 𝑀 and Q. Generally, the parameter 𝑀 is designed to
inverse the plant 𝑃 , while 𝑄 is a low-pass filter to reduce the high-
frequency noise. If 𝑑𝑎 accurately equals to 𝑑𝑎, then the disturbance 𝑑𝑎
can be completely cancelled by adding 𝑑𝑎 to the control loop. Ideally,
if 𝑀 correctly inverses 𝑃 , that is 𝑀 = 𝑄𝑃−1, and 𝑄 is designed to be
1, then we have 𝑑𝑎 = 𝑑𝑎. However, in practice, this is challenging to
achieve due to several reasons: (1) 𝑀 is designed based on the nominal
model 𝑃 , and the modeling uncertainties inevitably exist between the
nominal model and the actual model, and hence, 𝑀 will not correctly
inverse 𝑃 ; (2) the inversion-based design 𝑀 can introduce delays to
the system if 𝑃 is a strict causal system, because 𝑀 = 𝑃−1 is non-
causal and needs to be modified to be causal; (3) the input signals
of the DOB can be noisy and a non-unit 𝑄 is necessary to filtrate the
noises. These design compromises can lead to an undesired estimate 𝑑𝑎.
On the other hand, demanding disturbance suppression performance
requires an accurate model and extensive tuning efforts for 𝐶, 𝑀, 𝑄,
which is usually formidable, and for some systems, tuning the 𝐶, 𝑀, 𝑄
parameters is even impossible. Therefore, the disturbance estimation 𝑑𝑜
(no 𝑑𝑙 added) is subject to errors caused by not-well tuned controllers
and inaccurate DOB designs. To improve the estimate, a learning
signal compensated estimation mechanism is designed to improve the
estimate 𝑑𝑜. The learning signal is generated offline, and the learning
filter can be non-causal system which avoids introducing delays to the
signals. Essentially the learning mechanism is a feedforward method,
and it does not necessarily require very accurate 𝐶, 𝑀, 𝑄 parameters
since the learning signal aims to compensate for the performance error
caused by those parameter inaccuracies.

2.3. Stability and robustness analysis

In this section, we will theoretically analyze how the DOB affects
the closed-loop stability and robustness to modeling uncertainties. For
better reading, we present it in the theory-proof format.

Theory: The proposed hybrid DOB in Fig. 2 (1) does not affect the
stability of the original closed-loop system which is without DOB, and
3

Fig. 3. Original closed-loop system without DOB.

(2) has proved robustness to a bounded modeling uncertainties if the
following three conditions hold.

• The nominal model 𝑃 is minimum phase.
• The original system without DOB (Fig. 6) is stable.
• The 𝑄-filter is designed such that 𝛥𝑄 = 0, where 𝛥 is the

unmodeled dynamics which is stable and bounded by 1, and

𝑃 = 𝑃 (1 + 𝛥) (1)

Proof. We first prove that the DOB is an add-on to the control
system and does not affect the original system stability. Considering
that the feedforward signal in the hybrid DOB, i.e., 𝑑𝑙, does not affect
the stability and robustness of the feedback system, to shorten the
notations, we remove it during our analysis without loss of generality.
With the actual system diagram in Fig. 2, the dynamics can be derived
as follows:

𝑧𝑎 = 𝑃 {𝑑𝑎 + 𝑢𝑎2} (2)

𝑢𝑎1 = 𝐶{𝑧𝑟 − 𝑧𝑎} (3)

𝑑𝑎 = 𝑑𝑜 = 𝑀{𝑧𝑎} −𝑄{𝑢𝑎2} (4)

𝑢𝑎2 = 𝑢𝑎1 − 𝑑𝑎. (5)

Plug (3) and (4) into (5) to have

𝑢𝑎2 = (1 −𝑄)−1(𝐶{𝑧𝑟 − 𝑧𝑎} −𝑀{𝑧𝑎}) (6)

and plug (6) into (2) and re-organize the equation to have

𝑧𝑎 = [1 −𝑄 + 𝑃 (𝐶 +𝑀)]−1[(1 −𝑄)𝑃 {𝑑𝑎} + 𝑃𝐶{𝑧𝑟}]. (7)

Design

𝑀 = 𝑄𝑃−1 (8)

and plug (8) and (1) into (7) to have

𝑧𝑎 = [1 + 𝛥𝑄 + 𝑃𝐶]−1[(1 −𝑄)𝑃 {𝑑𝑎} + 𝑃𝐶{𝑧𝑟}]. (9)

For the actual system in Fig. 2, if the DOB is removed, the closed-
loop system dynamics with the same controller 𝐶, plant 𝑃 , inputs 𝑧𝑟
and 𝑑𝑎 is given in Fig. 3, where 𝑧′𝑎 is the corresponding output. It is
straightforward to have

𝑧′𝑎 = (1 + 𝑃𝐶)−1(𝑃 {𝑑𝑎} + 𝑃𝐶{𝑧𝑟}). (10)

Therefore, if the condition 𝛥𝑄 = 0 is satisfied, system (9) and (10) share
the same characteristic equation which is related to 1 + 𝑃𝐶 = 0. This
indicates that the DOB will not affect the original system stability if the
mentioned conditions are satisfied.

Proof. Secondly, we will prove that the proposed DOB is robust to a
bounded modeling uncertainty. To investigate the robustness, without
loss of generality, we remove the external input signals to the actual
system in Fig. 2, resulting an equivalent closed-loop system with DOB
incorporated given in Fig. 4, where 𝑢 is the output of 𝛥.
𝑎3
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Fig. 4. Closed-loop system with DOB incorporated.

With Fig. 4 we have

𝑧𝑎 = 𝑃 {𝑢𝑎2 + 𝑢𝑎3} (11)

and

𝑑𝑎 = 𝑚𝑎 − 𝑞𝑎 = 𝑀{𝑧𝑎} −𝑄{𝑢𝑎2}. (12)

Plug (8) and (11) into (12) to have

𝑑𝑎 = 𝑀{𝑧𝑎} −𝑄{𝑢𝑎2}

= 𝑄𝑃−1𝑃 {𝑢𝑎2 + 𝑢𝑎3} −𝑄{𝑢𝑎2}

= 𝑄{𝑢𝑎3}.

(13)

Then

𝑢𝑎1 = 𝐶{𝑒𝑎} = 𝐶{0 − 𝑧𝑎} (14)

and with (14), (11), and (13), we have

𝑢𝑎2 = 𝑢𝑎1 − 𝑑𝑎
= −𝐶{𝑧𝑎} −𝑄{𝑢𝑎3}

= −𝐶𝑃 {𝑢𝑎2 + 𝑢𝑎3} −𝑄{𝑢𝑎3}

(15)

and

𝑢𝑎2 = 𝐻{𝑢𝑎3} (16)

where

𝐻 = −(𝑄 + 𝐶𝑃 )(1 + 𝐶𝑃 )−1. (17)

From now on the input and output of 𝛥 is related by 𝐻 . If the 𝛥
block is removed from the original closed-loop system in Fig. 4, an
equivalent simplified closed-loop system can be constructed as given
in Fig. 5, where 𝑢𝑎3 and 𝑢𝑎2 serves as the output and input of 𝛥, and 𝐻
is placed into the feedback loop. Based on the small gain theory [27],
the closed-loop system in Fig. 5 is robust if the above three conditions
are satisfied.

In this study, the nominal model 𝑃 is minimum phase, and a con-
troller is designed to stabilize the system in Fig. 6. The third condition
shows that 𝛥𝑄 = 0 for all frequency range. This assumes that the 𝛥 has
gains close to 0 at low-frequency range, and in this study, 𝑄 parameter
is designed as a low-pass filter with gains close to 0 at high-frequency
range to satisfy the third condition. Therefore, the proposed method can
guarantee the system stability and robustness to the bounded modeling
uncertainty.

3. Optimization-based learning filter design

In this section, we present details on how to systematically design
the learning filter with theoretically proved improvements. To do so,
we will first augment a system which includes several components to
a unified state-space realization; then based on this, we will decouple
the to-be-designed learning filter from the augmented system; thirdly,
4

Fig. 5. Equivalent simplified closed-loop system.

the learning filter design problem is re-formulated into a feedback
controller design problem, which can be further formulated into an
optimization problem. We will introduce these procedures step by step
in the following subsections.

3.1. System augmentation

In this subsection, derivations are presented to relate 𝑒𝑎 and 𝑒𝑝 in
Fig. 2. The drone’s closed-loop dynamics of the position tracking in
the vertical direction is of the interest in this study, and due to that
the bandwidth of the attitude control loop is much higher than that of
the position control loop, the position-loop dynamics is approximated
as an LTI system 𝑃 . As mentioned above, the simulated system is
designed in the way to replicate the actual system for the case when no
learning signal is used. The disturbance 𝑑𝑝 in the simulated system is
a prediction of the actual disturbance 𝑑𝑎. Though the prediction error
naturally exists, it is reasonable to assume that both the modeling and
the prediction is accurate for the learning filter design and derivation
purposes. That is, without loss of generality, the following assumptions
are used just for the learning filter design and derivation purposes.

Assumption 1. 𝑑𝑎 = 𝑑𝑝 & 𝑃 = 𝑃

Denote systems 𝑃 , 𝑀, 𝑄, 𝐶, 𝐿 with the following forms

𝑃 ∼
[

𝐴𝑃 𝐵𝑃
𝐶𝑃 0

]

𝑀 ∼
[

𝐴𝑀 𝐵𝑀
𝐶𝑀 𝐷𝑀

]

𝑄 ∼
[

𝐴𝑄 𝐵𝑄
𝐶𝑄 0

]

𝐶 ∼
[

𝐴𝐶 𝐵𝐶
𝐶𝐶 𝐷𝐶

]

𝐿 ∼
[

𝐴𝐿 𝐵𝐿
𝐶𝐿 𝐷𝐿

]
(18)

where ‘∼’ means denoted by, and 𝐴{⋅}, 𝐵{⋅}, 𝐶{⋅}, and 𝐷{⋅} are state
matrices, input matrices, output matrices, and feedforward matrices,
respectively.

For the simulated system, denote 𝑥𝑃1, 𝑥𝑀1, 𝑥𝑄1, 𝑥𝐶1 as the state
variables of the system 𝑃 , 𝑀, 𝑄, 𝐶, respectively; denote 𝑘 as the
discrete-time index, and the following state-space realizations are listed:

𝑃 ∶ 𝑥𝑃1(𝑘 + 1) = 𝐴𝑃 𝑥𝑃1(𝑘) + 𝐵𝑃 (𝑢𝑝2(𝑘) + 𝑑𝑝(𝑘))

𝑧𝑝(𝑘) = 𝐶𝑃 𝑥𝑃1(𝑘)

𝑀 ∶ 𝑥𝑀1(𝑘 + 1) = 𝐴𝑀𝑥𝑀1(𝑘) + 𝐵𝑀𝑧𝑝(𝑘)

𝑚𝑝(𝑘) = 𝐶𝑀𝑥𝑀1(𝑘) +𝐷𝑀𝑧𝑝(𝑘)

𝑄 ∶ 𝑥𝑄1(𝑘 + 1) = 𝐴𝑄𝑥𝑄1(𝑘) + 𝐵𝑄𝑢𝑝2(𝑘)

𝑞𝑝(𝑘) = 𝐶𝑄𝑥𝑄1(𝑘)

𝐶 ∶ 𝑥𝐶1(𝑘 + 1) = 𝐴𝐶𝑥𝐶1(𝑘) + 𝐵𝐶𝑒𝑝(𝑘)

(19)
𝑢𝑝1 = 𝐶𝐶𝑥𝐶1(𝑘) +𝐷𝐶𝑒𝑝(𝑘).
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where 𝑒𝑝 = 𝑧𝑟−𝑧𝑝. For the actual system, denote 𝑥𝑃𝑎, 𝑥𝑀𝑎, 𝑥𝑄𝑎, 𝑥𝐶𝑎, 𝑥𝐿
as the state variables of the system 𝑃 , 𝑀, 𝑄, 𝐶, 𝐿 respectively, and
the following state-space realizations are listed:

𝑃 ∶ 𝑥𝑃𝑎(𝑘 + 1) = 𝐴𝑃 𝑥𝑃𝑎(𝑘) + 𝐵𝑃 (𝑢𝑎2(𝑘) + 𝑑𝑎(𝑘))

𝑧𝑎(𝑘) = 𝐶𝑃 𝑥𝑃𝑎(𝑘)

𝑀 ∶ 𝑥𝑀𝑎(𝑘 + 1) = 𝐴𝑀𝑥𝑀𝑎(𝑘) + 𝐵𝑀𝑧𝑎(𝑘)

𝑚𝑎(𝑘) = 𝐶𝑀𝑥𝑀𝑎(𝑘) +𝐷𝑀𝑧𝑎(𝑘)

𝑄 ∶ 𝑥𝑄𝑎(𝑘 + 1) = 𝐴𝑄𝑥𝑄𝑎(𝑘) + 𝐵𝑄𝑢𝑎2(𝑘)

𝑞𝑎(𝑘) = 𝐶𝑄𝑥𝑄𝑎(𝑘)

𝐶 ∶ 𝑥𝐶𝑎(𝑘 + 1) = 𝐴𝐶𝑥𝐶𝑎(𝑘) + 𝐵𝐶𝑒𝑎(𝑘)

𝑢𝑎1 = 𝐶𝐶𝑥𝐶𝑎(𝑘) +𝐷𝐶𝑒𝑎(𝑘)

𝐿 ∶ 𝑥𝐿(𝑘 + 1) = 𝐴𝐿𝑥𝐿(𝑘) + 𝐵𝐿𝑒𝑝(𝑘)

𝑑𝑙(𝑘) = 𝐶𝐿𝑥𝐿(𝑘) +𝐷𝐿𝑒𝑝(𝑘).

(20)

where 𝑒𝑎 = 𝑧𝑟 − 𝑧𝑎. In order to relate 𝑒𝑎 and 𝑒𝑝, we first define new
variables 𝑥̃𝑃 = 𝑥𝑃𝑎 − 𝑥𝑃 1, 𝑥̃𝑀 = 𝑥𝑀𝑎 − 𝑥𝑀1, 𝑥̃𝑄 = 𝑥𝑄𝑎 − 𝑥𝑄1, 𝑥̃𝐶 =
𝑥𝐶𝑎 − 𝑥𝐶1, and then we have

𝑒𝑎(𝑘) − 𝑒𝑝(𝑘) = −(𝑧𝑎(𝑘) − 𝑧𝑝(𝑘)) = −𝐶𝑃 𝑥̃𝑃 (𝑘) (21)

and
𝑢𝑎2(𝑘) − 𝑢𝑝2(𝑘) =[𝑢𝑎1(𝑘) − (𝑚𝑎(𝑘) − 𝑞𝑎(𝑘) + 𝑑𝑙(𝑘))]

− [𝑢𝑝1 − (𝑚𝑝(𝑘) − 𝑞𝑝(𝑘))]

=(𝑢𝑎1(𝑘) − 𝑢𝑝1(𝑘)) − (𝑚𝑎(𝑘) − 𝑚𝑝(𝑘))

+ (𝑞𝑎(𝑘) − 𝑞𝑝(𝑘)) − 𝑑𝑙(𝑘)

=(𝐶𝐶 𝑥̃𝐶 (𝑘) +𝐷𝐶 (𝑒𝑎(𝑘) − 𝑒𝑝(𝑘)))

− (𝐶𝑀 𝑥̃𝑀 (𝑘) +𝐷𝑀 (𝑧𝑎(𝑘) − 𝑧𝑝(𝑘)))

+ (𝐶𝑄𝑥̃𝑄(𝑘)) − (𝐶𝐿𝑥𝐿(𝑘) +𝐷𝐿𝑒𝑝(𝑘)).

(22)

Next, a new dynamic system 𝑇 is constructed to have 𝑒𝑎 = 𝑇 {𝑒𝑝},
that is, with an input 𝑒𝑝, the output of 𝑇 is 𝑒𝑎. Choose 𝑒𝑝 and 𝑒𝑎 as
the input and output of 𝑇 , and denote 𝐱𝑇 as the state variables of 𝑇 ,
where 𝐱𝑇 = [𝑥̃𝑃 , 𝑥̃𝑀 , 𝑥̃𝑄, 𝑥̃𝐶 , 𝑥𝐿]𝑇 . With (19), (20) and some basic
mathematical operations, the following equations can be written

𝑥̃𝑃 (𝑘 + 1) = 𝐴𝑃 𝑥̃𝑃 (𝑘) + 𝐵𝑃 (𝑢𝑎2(𝑘) − 𝑢𝑝2(𝑘))

𝑥̃𝑀 (𝑘 + 1) = 𝐴𝑀 𝑥̃𝑀 (𝑘) + 𝐵𝑀 (𝑧𝑎(𝑘) − 𝑧𝑝(𝑘))

𝑥̃𝑄(𝑘 + 1) = 𝐴𝑄𝑥̃𝑄(𝑘) + 𝐵𝑄(𝑢𝑎2(𝑘) − 𝑢𝑝2(𝑘))

𝑥̃𝐶 (𝑘 + 1) = 𝐴𝐶 𝑥̃𝐶 (𝑘) + 𝐵𝐶 (𝑒𝑎(𝑘) − 𝑒𝑝(𝑘))

𝑥𝐿(𝑘 + 1) = 𝐴𝐿𝑥𝐿(𝑘) + 𝐵𝐿𝑒𝑝(𝑘).

(23)

Denote 𝐴𝑇 , 𝐵𝑇 , 𝐶𝑇 , 𝐷𝑇 as the system matrix, input matrix, output
matrix, and feedforward matrix of 𝑇 . Then by plugging (21) and (22)
into (23), the state-space realization of 𝑇 is given in (24), where 𝐷𝑇 =
1.

𝐱𝑇 (𝑘 + 1)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝑃 − 𝐵𝑃𝐶𝑃 (𝐷𝐶 +𝐷𝑀 ) −𝐵𝑃𝐶𝑀 𝐵𝑃𝐶𝑄 𝐵𝑃𝐶𝐶 −𝐵𝑃𝐶𝐿

𝐵𝑀𝐶𝑃 𝐴𝑀 0 0 0
−𝐵𝑄𝐶𝑃 (𝐷𝐶 +𝐷𝑀 ) −𝐵𝑄𝐶𝑀 𝐴𝑄 + 𝐵𝑄𝐶𝑄 𝐵𝑄𝐶𝐶 −𝐵𝑄𝐶𝐿

−𝐵𝐶𝐶𝑃 0 0 𝐴𝐶 0
0 0 0 0 𝐴𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝐴𝑇

𝐱𝑇 (𝑘)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐵𝑃𝐷𝐿

0
−𝐵𝑄𝐷𝐿

0
𝐵𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝐵𝑇

𝑒𝑝(𝑘)

𝑒𝑎(𝑘) = [−𝐶𝑃 0 0 0 0]𝐶𝑇 𝐱𝑇 (𝑘) + 𝑒𝑝(𝑘).

(24)

From now on, the augment system 𝑇 which relates 𝑒𝑝 and 𝑒𝑎 is con-
structed.
5

Fig. 6. Nominal closed-loop system without DOB.

Fig. 7. Constructed system. The to-be-designed 𝐿 is placed into the feedback loop. The
closed-loop system from 𝑒𝑝 to 𝑒𝑎 is 𝑇 .

3.2. Decoupling of the learning filter

Eq. (24) indicates that 𝑇 lumps 𝑃 , 𝑀, 𝑄, 𝐶, 𝐿. To better formu-
late the learning filter design problem, this subsection decouples the
unknown dynamics 𝐿 from the known dynamics 𝑃 , 𝑀 , 𝑄, and 𝐶.

Denote a new state variable 𝐱𝐹 = [𝑥̃𝑃 , 𝑥̃𝑀 , 𝑥̃𝑄, 𝑥̃𝐶 ]𝑇 , and with (22)
and (23), the state-space realization in (25) can be written,

𝐱𝐹 (𝑘 + 1) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝑃 − 𝐵𝑃𝐶𝑃 (𝐷𝐶 +𝐷𝑀 ) −𝐵𝑃𝐶𝑀 𝐵𝑃𝐶𝑄 𝐵𝑃𝐶𝐶

𝐵𝑀𝐶𝑃 𝐴𝑀 0 0
−𝐵𝑄𝐶𝑃 (𝐷𝐶 +𝐷𝑀 ) −𝐵𝑄𝐶𝑀 𝐴𝑄 + 𝐵𝑄𝐶𝑄 𝐵𝑄𝐶𝐶

−𝐵𝐶𝐶𝑃 0 0 𝐴𝐶

⎤

⎥

⎥

⎥

⎥

⎦

𝐴𝐹

𝐱𝐹 (𝑘)

+

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝐹1

𝑒𝑝(𝑘) +

⎡

⎢

⎢

⎢

⎢

⎣

−𝐵𝑃

0
−𝐵𝑄

0

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝐹2

𝑑𝑙(𝑘)

𝑒𝑎(𝑘) = [−𝐶𝑝 0 0 0]𝐶𝐹1
𝐱𝐹 (𝑘) + 𝑒𝑝(𝑘) + 0 ⋅ 𝑑𝑙(𝑘)

𝑒𝑝(𝑘) = [0 0 0 0]𝐶𝐹2
𝐱𝐹 (𝑘) + 𝑒𝑝(𝑘) + 0 ⋅ 𝑑𝑙(𝑘).

(25)

where a new defined system 𝐹 is

𝐹 ∼
⎡

⎢

⎢

⎣

𝐴𝐹 𝐵𝐹1 𝐵𝐹2
𝐶𝐹1 𝐷𝐹11 𝐷𝐹12
𝐶𝐹2 𝐷𝐹21 𝐷𝐹22

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐴𝐹 𝐵𝐹1 𝐵𝐹2
𝐶𝐹1 1 0
𝐶𝐹2 1 0

⎤

⎥

⎥

⎦

(26)

and (25) indicates that system 𝐹 has two inputs 𝑒𝑝, 𝑑𝑙 and two outputs
𝑒𝑎, 𝑒𝑝, and the closed-loop system from 𝑒𝑝 to 𝑒𝑎 remains as 𝑇 . Therefore,
the learning filter 𝐿 can be decoupled from 𝑇 , as shown in Fig. 7, where
it shows that 𝐿 is placed into the feedback loop of the system, and 𝐹
only lumps the known dynamics 𝑃 , 𝑀, 𝑄, 𝐶.

3.3. Optimization-based design principle and practical design guideline

A design guideline for the learning filter is to have ‖𝑒𝑎‖2 ≤ ‖𝑒𝑝‖2,
and this can be achieved by reaching a minimum norm of 𝑇 , which is
equivalent to reach

min
𝐿

𝛾

s.t. |𝜆𝑖(𝐴𝑇 )| < 1, ∀ 𝑖

𝜎̄{𝐷𝑇 + 𝐶𝑇 (𝜂𝐼 − 𝐴𝑇 )−1𝐵𝑇 } < 𝛾, ∀ |𝜂| > 1

(27)

where 𝜆𝑖(𝐴𝑇 ) is the 𝑖th eigenvalue of 𝐴𝑇 , 𝜎̄{⋅} denotes the maximum
singular value of a matrix, 𝛾 is a real number, and 𝐼 is a identity matrix.
Further, (27) can be transferred to the following convex optimization
problem [28]

min 𝛾 (28a)

𝑅, 𝑆∈𝑅𝑛×𝑛 , 𝛾
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⎡

⎢

⎢

⎣

L1(𝑅, 𝛾) 0 0
0 L2(𝑆, 𝛾) 0
0 0 − L3(𝑅,𝑆) − 𝛿𝐼

⎤

⎥

⎥

⎦

< 0, (28b)

where 𝛿 is small and positive, and

𝐿1(𝑅, 𝛾) =

[

𝑁𝑅 𝟎

𝟎 𝐼

]𝑇
⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝐹𝑅 + 𝑅𝐴𝑇
𝐹 𝑅𝐶𝑇

𝐹1 𝐵𝐹1

𝐶𝐹1𝑅 −𝛾𝐼 𝐷𝐹11

𝐵𝑇
𝐹1 𝐷𝑇

𝐹11 −𝛾𝐼

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑁𝑅 𝟎

𝟎 𝐼

]

< 0
(29)

𝐿2(𝑆, 𝛾) =

[

𝑁𝑆 𝟎

𝟎 𝐼

]𝑇
⎡

⎢

⎢

⎢

⎢

⎣

𝐴𝐹𝑆 + 𝑆𝐴𝑇
𝐹 𝑆𝐵𝑇

𝐹1 𝐶𝑇
𝐹1

𝐵𝑇
𝐹1𝑆 −𝛾𝐼 𝐷𝑇

𝐹11

𝐶𝐹1 𝐷𝐹11 −𝛾𝐼

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑁𝑆 0

0 𝐼

]

< 0
(30)

𝐿3(𝑅,𝑆) =

[

𝑅 𝐼
𝐼 𝑆

]

≥ 0 (31)

where 𝑁𝑅 and 𝑁𝑆 denote the bases of the null spaces of (𝐵𝑇
𝐹2, 𝐷

𝑇
𝐹12)

and (𝐶𝑇
𝐹2, 𝐷

𝑇
𝐹21), respectively. The system 𝐹 is obtained as shown in

(26), and therefore 𝑁𝑅 and 𝑁𝑆 are determined. Matlab software can
be used to efficiently search suitable symmetric matrices 𝑅 and 𝑆
which satisfy (29)∼(31) to solve the problem in (28). The feedback
controller 𝐿 can be constructed with the following steps. After 𝑅 and
𝑆 are obtained, compute two full-column-rank matrices 𝑈 and 𝑉 which
satisfy

𝑈𝑉 𝑇 = 𝐼 − 𝑅𝑆 (32)

and then an adequate 𝑋𝑐𝑙 can be obtained as the unique solution of the
following equations
[

𝑆 𝐼
𝑉 𝑇 0

]

= 𝑋𝑐𝑙

[

𝐼 𝑅
0 𝑈𝑇

]

. (33)

Then the positive definite matrix 𝑋𝑐𝑙 can be used to form a Bounded
Real Lemma inequality, and by solving this inequality a solution
[𝐴𝐿, 𝐵𝐿; 𝐶𝐿, 𝐷𝐿] can be obtained to construct the learning filter 𝐿.
More details can be referred to the chapter 7 in [28].

Note that the optimization-based learning filter design is not new,
the novelty here is to provide a systematic way to first dynamically
connect the two errors 𝑒𝑎 and 𝑒𝑝 and then formulates the design
problem into the optimization problem.

4. Validation

This section demonstrates the validation of the proposed hybrid
DOB. A drone platform is first built, and then two testing scenarios are
carried out with results discussed in detail.

4.1. Platform and parameters setup

As shown in Fig. 8, the test platform mainly includes an assembled
quadrotor drone with its specifications given in Table 1. Reflective
markers are attached to the drone, and the VICON motion capture
system with infrared cameras are used to track the reflective markers to
estimate the position and orientation of the drone. In the test, a bottle
of water is used as the payload and it is rigidly hooked under the drone,
and there is no swing during the test. The gravity center of the drone
and the payload is nearly aligned in the vertical direction, and only the
disturbance in the vertical direction is considered.

The electronics equip the drone system to receive the data from
the VICON system, execute control commands including driving the
rotor and releasing the servo, and store the flight data in real time.
6

The VICON system outputs high-accuracy data at a frequency of 100
Fig. 8. Experimental platform: the drone is connected with a thin light power cable
and its influence to the results are negligible. The cable is placed at the same position
for each test. A bottle of water is used as the payload in the real test and the payload
weight is changed by adding/reducing water in the bottle.

hz. The hook and release device is mounted at the bottom of the drone.
A motor is controlled to hook and release the payload.

The quadrotor is a highly nonlinear system [29] and robust con-
trollers or adaptive controllers are able to stabilize the drone, but it
requires accurate models and extensive system identification efforts.
Also, tuning the feedback controller is not feasible for system whose
baseline controller is not allowed to be modified. On the other hand,
there existing considerable amount of work in the tracking control
of drones which uses PID controllers that are designed based on a
linearized model around hover conditions [30–33]. When the roll and
pitch angles are reasonably small, a standard PID controller usually per-
forms adequately. In our case, a PID controller is designed to stabilize
the drone in the first place. A very accurate model and PID controller
are not required. Instead, the generated learning signal is able to
compensate for those inaccuracies, which provides an alternative way
to handle this problem.

In this study, the drone plant absorbs the baseline controller and
the closed-loop dynamics of the position tracking is identified as an LTI
system 𝑃 using recursive least square-based algorithm [34]. Basic DOB
parameters 𝑄 and 𝑀 are implemented for the drone, where 𝑀 aims to
inverse 𝑃 , and 𝑄 is a low pass filter. Similarly, extensive tuning work
for the 𝑀 and 𝑄 parameters are unnecessary. To provide some insights
of the dynamic parameters, the transfer functions and bode plot tool
is used to show the frequency properties of the dynamics parameters.
The transfer functions of 𝑀 , 𝑄, 𝑃 , 𝐿, and 𝑇 are given as

𝑀(𝑧−1) = 1 − 1.408𝑧−1 + 0.4215𝑧−2

0.4958𝑧−1 − 0.4827𝑧−2

𝑄(𝑧−1) = 0.4425
𝑧 − 0.3679

𝑃 (𝑧−1) = 0.4958𝑧−1 − 0.4827𝑧−2

1 − 1.408𝑧−1 + 0.4215𝑧−2

𝐿(𝑧−1) = −0.6953 + 0.9792𝑧−1 − 0.2931𝑧−2

0.4958 − 0.486𝑧−1 + 0.003252𝑧−2

𝑇 (𝑧−1) = 1 − 2.953𝑧−1 + 3.055𝑧−2 − 1.248𝑧−3 + 0.1462𝑧−4

1 − 2.605𝑧−1 + 2.228𝑧−2 − 0.6356𝑧−3 + 0.01215𝑧−4

(34)

where 𝑧−1 is the discrete-time operator. Note that the original 𝑇 is a
12th order system, whose order can be equivalently reduced to 4th
order, and this will not affect the design of the 𝐿. The bode plots
of 𝑀 and 𝑄 are given in Fig. 9, where it shows that 𝑄 has a cutoff
frequency of 10 hz, and the magnitude at the low-frequency range has
been reduced below 0 db to lower the DOB’s sensitivity to noises in
practice. The bode plots of 𝑃 , 𝐿, and 𝑇 are given in Fig. 10, and it

shows that at the low-frequency range (< 6.4 hz), the magnitude of 𝑇
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Table 1
Main specifications of the assembled drone.
Frame brand Tarot 650
Wheelbase diameter 650 mm
Motor JMT MT3508 brushless motor
Electronic speed controller Readttosky (30A)
Propeller brand QWINOUT
Propeller size length: 15 inch, pitch: 5.5
Flight controller Pixhawk
Companion computer Raspberry pi
Payload releasing servo brand Hitech
PWM servo motor driver brand MakerFocus
Drone weight without payload 1350 g

Fig. 9. Bode plots of 𝑀 and 𝑄.

Fig. 10. Bode plots of 𝑃 , 𝐿 and 𝑇 .

is smaller than 1, and this is equivalent to meet the condition (27) in
the time domain analysis. The learning filter 𝐿 has a very resembling
magnitude curve as the 𝑀 (the two curves are not identical in shape),
and this indicates that the optimization solver generates a solution 𝐿

hich mainly based on the inversion of 𝑃 .

The prediction 𝑑𝑝 in the simulated system is obtained prior to the
eal test. The neural network model is leveraged as a standard tool to
7

Fig. 11. LSTM network structure.

have a basic prediction. Consider that the signals used in the control
system are time series, we select the long short-term memory (LSTM)
neural network model to have regression due to that LSTM can learn
the long term dependencies of the data. The LSTM model maps from the
payload weight to the equivalent disturbance and the model structure
is given in Fig. 11, where the network model includes a sequence input
layer, an LSTM layer, a fully connected layer, and a regression output
layer; with sequence length 𝑛, [𝑠𝑚(1), 𝑠𝑚(2), ⋯, 𝑠𝑚(𝑛)]𝑇 denotes the
input sequence, [𝑑𝑝(1), 𝑑𝑝(2), …, 𝑑𝑝(𝑛)]𝑇 denotes the output sequence;
he LSTM layer includes 𝑛 LSTM cells which the cell structure can be
eferred to [26], and [𝑐𝑙(1), 𝑐𝑙(2), …, 𝑐𝑙(𝑛−1)]𝑇 denotes the cell state, and
[𝑜𝑙(1), 𝑜𝑙(2), …, 𝑜𝑙(𝑛 − 1)]𝑇 denotes the cell output. The LSTM cells are
nonlinear and chain-connected such that the LSTM layer is able to learn
nonlinear and long-term dependencies. The payload weight information
is discretized into a time series and is used as the input of the network
model.

To train the neural network model, the training dataset is collected
with the following steps: (1) the drone takes off from the ground
carrying a payload with mass m, and then it hovers at an altitude of 1
meter; (2) then the drone drops the payload, and the altitude variation
in the output channel around the hovering point is recorded for a
defined time duration, and the data will be used as the model’s output
(label) of the training; (3) the scalar 𝑚 is manually transformed into a
time series and the data will be used as the model’s input (feature) of
the training. By using payload with different weight, 85 data samples
in total are collected. Consider that the network aims to predict the
disturbance only in the vertical direction, and the drone’s payload
capacity is limited to 190 grams, a small dataset size is regarded as
sufficient to train a neural network model for the prediction task.

In the training, 80% of the data is used as the training dataset and
the remaining as the validating dataset. The batch gradient descent
algorithm [35] is used with ‘Adam’ optimizer. The learning rate is
set to be 0.01 without a learning decay; the gradient threshold is set
to 1 to prevent gradients exploding. The training process is given in
Fig. 12, where RMSE means the root mean square error. It shows that
the loss reduces quickly in the beginning and then converges. Note that
the up and downs within the first 10 iterations could be related to
over learning or the model’s non-convexity property, and similar loss
trend can be observed in the figure 8 in paper [36]. In batch Gradient
Descent, one iteration utilizes all the dataset for training, and the
average of the gradients of all the training examples is calculated and
used to update the weight parameters and bias. The training process
shows that the loss converges after 20 iterations and the RMSE value
is kept small, which shows that the weight parameters are suitable
after 20 iterations. Though RMSE is used as the performance metric

for the regression, the model mismatch between the NN and the actual
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Fig. 12. LSTM network training process.

dynamics is not quantified and discussed in this study. Moreover, this
paper intends not to use large datasets to train a perfect NN with great
efforts, instead, we show that the proposed method can achieve desired
performance with network model uncertainties exist.

4.2. Experimental tests

Two test scenarios are carried out. In scenario 1, the carried payload
weight is 95 grams; in scenario 2, the carried payload weight is 145
grams and the other settings are the same as in scenario 1. For each
scenario, the drone first takes off carrying the payload and reaches the
altitude of 1 meter; then it hovers for a while and starts to release the
payload, and at the same time, the drone will oscillate and the proposed
hybrid DOB initiates to suppress the oscillation. The learning signal
will be generated before the dropping action takes place, and the DOB
is running in real-time. The detailed implementation procedure of the
proposed DOB can be referred to Algorithm 1.
Algorithm 1 Hybrid DOB
Inputs:
1. Drone model 𝑃 , learning filter 𝐿, standard DOB (𝑀 and 𝑄);
2. LSTM network;
Initialization: Set the hovering reference 𝑧𝑟 = 1 meter for the drone
if the payload is not yet dropped then

1. with the payload weight value 𝑚, the disturbance prediction (𝑑𝑝)
is generated;
2. then 𝑑𝑝 is added to the simulated system to generate the tracking
error 𝑒𝑝;
3. then 𝑒𝑝 goes through the learning filter 𝐿 and the learning signal
𝑑𝑙 is generated and sent to the drone;

lse
1. The 𝑑𝑙 is added to the estimate 𝑑𝑜 at the instance when the
payload dropping command is received;
2. The flying data during the payload dropping process is recorded
for the designed flying duration.

end

A flying duration of 7.7 s is recorded after the payload dropping
ommand is received, and the flight data are saved on board for anal-
sis. To show the effectiveness of the proposed DOB, in each scenario,
he drone will repeat the payload dropping operation (1) without using
DOB, (2) with using a standard DOB, (3) with using the hybrid DOB,

nd the results are recorded for comparison purposes. Note that the
OB parameters 𝑀 and 𝑄 are the same in the standard DOB and hybrid
OB design.
Scenario 1: payload is 95 g: With the payload weight, the NN

predicts the input disturbance, and the prediction goes through the
simulated system to generate the tracking error. With the learning filter,
8

e

the learning signal is generated as shown in Fig. 15. The drone’s oscilla-
tion variation without DOB, with a standard DOB, and with the hybrid
DOB are given in Fig. 13. The 2-norm of the altitude variation from
reference in the 3 cases are 0.8984, 0.2574, 0.1468, respectively. The
results show that without a DOB, the oscillation caused by the dropping
action is large, and a standard DOB can suppress the oscillations
tremendously, where the hybrid DOB can further reduce the oscillations
to a certain degree. The predicted disturbance 𝑑𝑝 from the NN, along
with the estimated disturbance 𝑑𝑝 and 𝑑𝑎 are given in Fig. 16. Though
rediction error could exist and has not been quantified, the proposed
ethod is expected to handle a certain amount of uncertainties as

xplained above.
Scenario 2: payload is 145 g: With this larger payload weight, the

earning signal is generated as shown in Fig. 15. The drone’s oscillation
ariation without DOB, with a standard DOB, and with the hybrid DOB
re given in Fig. 14. The 2-norm of the altitude variation from reference
n the 3 cases are 1.3410, 0.2742, 0.1971, respectively. The results
ndicate that similar conclusions as in scenario 1 can be made and the
roposed DOB is effective to reject disturbance with larger quantities.
he predicted disturbance 𝑑𝑝 from the NN, along with the estimated
isturbance 𝑑𝑝 and 𝑑𝑎 are given in Fig. 16.

Compared to the system performance of the standard DOB, the
ybrid DOB is better, and the 2-norm of the tracking error is reduced
y 43% in scenario 1 and 28% in scenario 2 over the standard DOB.
igs. 13 and 14 indicate that without a DOB, it would take a very long
ime to reach the steady state. Longer time frame may not be able
o compare the transient performances obviously in the figures due to
arge scale of the 𝑥-axis, and here only 7.7 s duration is provided. To
rovide some insights of the steady state error, in scenario 1, the steady
tate errors of the one without DOB, the one with standard DOB, the
ne with the hybrid DOB are 0.08, 0.02, 0.02, respectively. In scenario
, the steady state errors of the one without DOB, the one with standard
OB, the one with the hybrid DOB are 0.10, 0.02, 0.02, respectively.
he advantages of the hybrid DOB over the standard DOB is twofold:
1) the hybrid DOB has better disturbance suppression performance
ver the standard DOB regarding the transient performance; (2) the
ybrid DOB provides more design flexibility to 𝐶, 𝑀, 𝑄 parameters,
hat is, in the cases that the baseline controller 𝐶 and the DOB pa-
ameters 𝑄, 𝑀 are not well designed, the hybrid DOB serves as a
easible method to improve the system performance without tuning
he baseline controller and DOB parameters, which this is useful for
ystems that tuning is not convenient. Note that the drone prototype
eveloped has a physical payload limitation, but it is suitable as a
latform to validate the proposed DOB algorithm and the theoretical
ontributions. However, this algorithm is adaptive to real delivery
rone applications with larger payload capacities. Another point to
ake is that most systems can be linearized at equilibrium points and

herefore the proposed method can be applied. However, the proposed
ethod has limitations when it comes to time-variant systems.

. Conclusions

Regarding the delivery drone’s payload dropping scenarios, this
aper proposes a new hybrid DOB to suppress its oscillations. The
ybrid DOB leverages the neural network prediction and the dynamic
ilters to generate a learning signal to enhance the disturbance esti-
ate. The method is tested with actual experimental tests and those

esults validate that the learning mechanism is effective to suppress
scillations for delivery drones. The proposed method can serve as an
lternative DOB design which can provide more flexibility for baseline
ontroller and DOB parameter design in specific applications. Note
hat we do not highlight the neural network part, but leverage it as

standard predicting technique. The proposed method is applicable
o general and linearized LTI systems. The future work will explicitly

xplore the system robustness to predicting uncertainties, as well as
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Fig. 13. Scenario 1: the maximum oscillation variation during the payload dropping process for the three control cases, and they are 16.9 cm, 6.3 cm, and 3.7 cm, respectively.
‘Reference’ in the figure stands for the hovering altitude before the dropping motion. The experimental video is available via this link.
Fig. 14. Scenario 2: the maximum oscillation variation during the payload dropping process for the three control cases, and they are 23.2 cm, 9.6 cm, and 4.3 cm, respectively.
‘Reference’ in the figure stands for the hovering altitude before the dropping motion. The experimental video is available via this link.
Fig. 15. Learning signals.

Fig. 16. Estimated/predicted disturbance in the two scenarios.

test the dropping scenarios using some commercial drones with larger
payload limit.
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